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Abstract. Quantum corrections to the conductivity of a mesoscopic ring in a nonstationary
magnetic field with the flux �(t) = V t are investigated. The time dependence of the quantum
corrections shows periodic cusps with a period corresponding to the magnetic flux quantum
�0 = hc/2e. If the characteristic time of the magnetic flux variation τ0 = �0/V is much
smaller than the phase relaxation time τϕ , the cusps become asymmetrical.

1. Introduction

Periodic oscillations of magnetoconductivity, related to the Aharonov–Bohm effect, are well
known. The first prediction of this phenomenon in dirty conductors [1] was experimentally
confirmed by magnetoresistance measurements with a hollow, thin-walled metallic cylinder [2]
and planar honeycomb network [3]. The effect originates from the interference of electronic
paths running around the hole in opposite directions, and has the period of oscillation �0.

The conductivity of disordered mesoscopic rings in stationary magnetic and variable
electric fields was studied experimentally in [4]. In particular, the conductivity oscillations
with a period h/e were observed in all ranges of electric field frequencies. The oscillations
are suppressed if the electric field frequency exceeds the inverse sample transit time and the
thermal frequency kT /h̄.

A theoretical study of the stationary Aharonov–Bohm effect in a mesoscopic ring was
carried out by Fal’ko [5], with the influence of tunnel contacts taken into account.

The influence of variable magnetic field with the flux �(t) = V t +
∑

i Ai sin (ωit +qi) on
the free-electron states was studied in the recent works [6, 7]. The interference of two electron
beams is sensitive to V and ω. A stationary interference picture appears at frequencies equal
to a multiple of V .

The accumulation of energy of linearly varying (with time) magnetic flux in a quantum
ring with limited number of impurities was studied in [8].

However, realization of quantum rings without impurities or with a low amount of
impurities is complicated by their small size. In addition, the small ring area leads to a
small magnetic flux variation rate, which complicates the observation of the specific effects
of a nonstationary magnetic field. Measurements of the Aharonov–Bohm effect in solids are
usually carried out using mesoscopic rings [9] whose perimeter is comparable with the phase-
breaking length for electrons and much exceeds the mean free path of electrons. The electronic
states are strongly mediated by the disorder producing diffusion and cooperon modes.
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Figure 1. Mesoscopic ring with tunnel contacts. Two interfering trajectories are drawn inside the
ring.

In this work, the influence of a linearly varying magnetic field on the quantum corrections
to conductance of a disordered mesoscopic ring is studied and the possibility of experimental
observation of the effect is analysed. The ring conductance essentially depends on the tunnel
contacts (figure 1). We consider tunnelling to be weak, so that contacts have no effect on the
states in the ring. The ring width is expected to be sufficiently small, so that the ring can
be considered to be a one-dimensional ‘wire’ from the standpoint of quantum corrections.
Therefore, the ring width must be less than Lϕ = √

Dτϕ .

2. Calculation of quantum corrections

The analytical expression for the quantum corrections is given in terms of the cooperon Green
functions [10] satisfying the diffusion-like equations{
∂η + D

[
−i∇ − e

ch̄
A
(
t − η

2

)
− e

ch̄
A
(
t +

η

2

)]2
+

1

τϕ

}
Ct

η,η′(x, x
′)

= δ(x − x ′)δ(η − η′) (1)

inside the ring.
In a mesoscopic system, equation (1) has to be supplemented with boundary conditions

at the contacts. According to [5], they can be introduced phenomenologically in the form of
continuity and current conservation equations

C(+0, x ′) = C(L − 0, x ′)
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2
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2
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)
.

(2)

Here the variable 0 < x < L denotes the coordinates along the ring and L = 2πR is the
ring circumference. According to [5], the parameter α = Gwire/Gcontact is used to describe the
mesoscopic effects in the case when the contacts between the ring and the electrodes have a
tunnelling character. Gwire and Gcontact are the classical wire and contact conductances. When
the parameter α is small, α � 1, it represents the probability of electron’s resting in the ring
after each flight through a contact region. An isolated ring is described by α � 1.

By analogy with [5], we can obtain the relation between the quantum corrections to the
conductance and the cooperon in a variable magnetic field

δG(t) = − 4e2D

πh̄V0L

∫
dx
∫

dη
∫

dε∇N(ε, x)C
η−t
η,−η(x, x). (3)
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Here V0 is the voltage drop across the sample and N(ε, x) is the distribution function of
electrons in the ring, satisfying the following equation and boundary conditions at the contacts,
analogous to those in (2)

∂2
xN(ε, x) = 0

±αL∂xN = N − NF

(
ε +

eV0

2

)
at x = + 0, L − 0 (4)

±αL∂xN = NF

(
ε − eV0

2

)
− N at x = L

2
− 0,

L

2
+ 0

where ‘+’ and ‘−’ correspond to, respectively, ‘up’ and ‘down’ semicirclets. NF(ε ± eV0/2)
are the Fermi distribution functions for the source and the drain.

Solving (4) we find

∂xN(ε, x) = ± 2eV0

L(1 + 4α)
δ(ε − εF). (5)

Substituting (5) into equation (3) and taking into account that in the case of weak tunnelling
α � 1, we obtain†

δG(t) = − e2D

απL

∫
C

η−t
η,−η(x, x) dη. (6)

Taking account of the periodic boundary conditions along the x-axis, the solution of
equation (1) in a uniform high-frequency field linearly depending on time (H = h0t) is given
by

Ct
η,η′(x, x) = 1

L
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(7)

where pm
x = 2πm/L. We use here a gauge with the only component Ax(t) = �(t)/L.

Substituting equation (7) in (6), we obtain

δG(t) = − e2

4απ3

(
τ0

τR

)2/3∑
m

F(xm, y) (8)

F(x, y) =
∫ ∞

0
exp

{− [(x − η)2 + y
]

2η
}

dη . (9)

We use the notation xm = (τ0/τR)
1/3(m + t/τ0), y = (τ0/τϕ)(τR/τ0)

1/3, τR = R2/D.
The function F(x, y) oscillates with a period τ0. It reaches a maximun near x = 0, and

has the following asymptotes:
at x → −∞

F(x, y) � 1

2(x2 + y)
(10)

at x → +∞

F(x, y) �
√

π

2x
exp (−2xy) +

1

2(x2 + y)
. (11)

These approximations are valid when τ0 � τR .

† Hereafter we assume h̄ = 1. We restore h̄ in the final formulae.
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Figure 2. Function F(x, y) at different values of the parameter y.

We can see from (10) and (11) that F(x, y) is an asymmetrical function of time. In
particular, when τ0 � τϕ , the asymptotes coincide and F(x, y) becomes symmetrical. The
dependence of F(x, y) on the parameter x at different values of y is depicted in figure 2.
This corresponds to the case when τ0 < τϕ and the asymmetry arises from the conservation
of the cooperon phase at a time of order of τ0. The asymmetry disappears in the opposite
quasistationary limit, and the quantum corrections coincide with those in stationary case.

Replacing in (8) the summation over m by integration with the use of the Poisson
summation formula, we obtain the Fourier representation of the quantum corrections to the
conductance

δG(t) = δG0 +
∞∑
k=1

[
δGa
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)
+ δGb
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where
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The superscripts a and b refer to the upper and lower lines in the square brackets in (13),
respectively.

Integration of equation (13) yields
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Figure 3. Quantum corrections δG(t) (in units of G0 = e2/8π2α) as a function of time. Here
τϕ = 10−8 s, τ0 = 8 × 10−9 s, τR = 10−11 s.

In the quasistationary case, τ0 � τϕ , we obtain

δG0 = − e2

8απ2
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R
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k = 0 δGb
k = − e2
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)
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In the opposite case, with τ0 � τϕ ,
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We have strong suppression of the harmonics with k = 0 in (15) at R � Lϕ and in (16)
at τR � τ0.

The time dependence of δG(t) in the case τ0 � τϕ is depicted in figure 3. Summing (12)
over k and using (15), we obtain the well known expression for the quantum corrections in a
stationary magnetic field [10]

δG(t) = − e2

8απ2h̄

Lϕ

R

sinh
(
2πR/Lϕ

)
cosh

(
2πR/Lϕ

)− cos (2πt/τ0)

= − e2

8απ2h̄

Lϕ

R

sinh
(
2πR/Lϕ

)
cosh

(
2πR/Lϕ

)− cos (2πV t/�0)
. (17)

3. Discussion

Let us discuss the conditions under which the Aharonov–Bohm effect is observed in a
nonstationary magnetic field. Firstly, the condition τ0 < τϕ must be fulfilled. Hence, the
time derivative of the magnetic field must be large enough, so that Ḣ > �0/(d

2τϕ).
In typical strongly doped semiconductors, τϕ ∼ 10−9−10−8 s (at T = 1 K). Then, for

a ring of size d � 10−6 m, Ḣ > 105−106 T s−1. This condition is valid, for instance, if
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UHF techniques are used to create a nonstationary magnetic field, in particular, by placing
the sample under study in a resonator. The maximum fields in evacuated resonators exceed
108 V m−1. If the characteristic field in the resonator H ∼ 10−3 T (E ∼ 3 × 105 V m−1) and
characteristic frequencies ω ∼ 108−109 Hz, we obtain Ḣ ∼ 106−107 T s−1.

However, a strong electric field in the resonator may disturb the measurements. Therefore,
a resonator with Emax and Hmax having a spatial shift should be used, with the sample located
at that place of the resonator where the electric field approaches zero.

In the case of a λ/4 shift, the electric field variation at the opposite ends of the ring
/E � Emaxd/λ � (0.5−5.0)×10−6Emax. ForEmax ∼ 3×105 V m−1 /E � 10−1−1 V m−1

and /V � 10−7−10−6 V. At the ends of a sample of size ∼ 10−4 m /V � 10−3−10−4 V.
The influence of such a voltage drop is expected to be not too essential. An

important problem is how can voltage pickups by measuring wires and electric breakdown
in measurements be ruled out. Voltage pickups can be reduced by careful fabrication and
installation of the electrode system, necessary to compensate for a large possible field in the
resonator with an accuracy of 10−7−10−6. We hope that this can be done by the methods of
micrometer technology. It is desirable to use a sample consisting of a planar insulating substrate
on whose surface both the mesoscopic ring and the conductor electrodes are prepared. The
plate should be placed in the resonator with micron accuracy along the plane on which the
electric field components are zero. For a parallelepiped resonator and waves of magnetic type
(Ez = 0), the electric field components Ex and Ey vanish in the middle of the rib perpendicular
to the xy-plane, with the magnetic field component Hz being there at a maximum. Therefore,
a plate with a ring can be placed close to this point perpendicularly to the z-axis. In this case
the measuring leads can be brought out of the resonator through a slot in the resonator wall,
which also reduces the stray voltage pickup. Also, it is desirable to ensure compensation of
the voltage pickup by the zero spot method.
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